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A s t ruc tu red  p r e s s u r e  flow of v i scoplas t ic  liquid in an infinite round tube is examined. En-  
e rgy  diss ipat ion is  given due consideration; it is a s sumed  that the t e m p e r a t u r e  dependences 
of the p las t ic  v i scos i ty  and the u l t imate  shear  s t r e s s  a r e  exponential.  The solution obtained 
when the p a r a m e t e r  charac te r iz ing  the r a t e  of production of heat of internal f r ic t ion  is a s -  
sumed to be  sma l l  indicates that energy  diss ipat ion has a sgnificant effect  on the local flow 
c h a r a c t e r i s t i c s  and the h y d r a u l i c - r e s i s t a n c e  coefficient,  fo r  which an express ion  sui table  for  
engineer ing calculat ions is  given. 

The re  have been invest igat ions [1-7] of s teady s t ruc tu red  p r e s s u r e  flows of Newtonian and non-New- 
tonian liquids in which the energy diss ipat ion and the var ia t ion  of the rheolegica l  cha r ac t e r i s t i c s  with t em-  
p e r a t u r e  have been taken into account. 

Kaganov [3] showed that the re  a r e  c r i t i ca l  p r e s s u r e  gradients  above which a s teady flow of Newtonian 
liquid is impossible .  Some authors [4-6] have shown that a hydrodynamic  t h e r m a l  explosion can occur  in 
flows of Newtonian [4] and non-Newtonian [5, 6] liquids. 

It  is of in te res t  to solve this p rob lem in the region of p a r a m e t e r s  in which the flow and h e a t - t r a n s f e r  
r e g i m e s  a r e  steady. If a l a rge  e r r o r  is to be  avoided we mus t  take t e m p e r a t u r e  dependences of the rheo-  
logical  c h a r a c t e r i s t i c s  of the liquid which a r e  s i m i l a r  to the exper imenta l  re la t ionships .  

In the invest igat ion of a p r e s s u r e  flow of v iscoplas t ic  liquid in [6, 7], where  energy  diss ipat ion r e -  
ceived due considerat ion,  it was a s sumed  that the p las t ic  v i scos i ty  va r i e s  with t e m p e r a t u r e  in accordance  
with a hyperbol ic  law, and the u l t imate  shear  s t r e s s  v a r i e s  with t e m p e r a t u r e  in accordance  with the s a m e  
law [6], o r  i s  constant [7]. 

Such v iscoplas t ic  liquids as paraff in  oils a r e  charac te r i zed  by a s t rong t e m p e r a t u r e  dependence of 
the i r  theo logica l  cha rac t e r i s t i c s  [8, 9]; this dependence is sa t i s fac tor i ly  approximated  by an exponential 
curve  [9, 10]. 

A p r e s s u r e  flow of v i scoplas t ic  liquid fo r  this case  of var ia t ion  of the theologica l  cha r ac t e r i s t i c s  with 
t e m p e r a t u r e  has not been investigated.  

We consider  a s teady s t ruc tu red  flow of v i scop las t i c  liquid with a Shvedov-B ingham rheologica l  equa-  
t ion due to a p r e s s u r e  di f ference ( - d p / d z )  in a round tube of radius  R along the z axis .  A constant  t e m p e r -  
a ture  T O is mainta ined at the wall,  the t e m p e r a t u r e  gradient  along the flow is zero,  and the noniso thermic i ty  
of the flow is due to energy dissipat ion.  

We a s s u m e  that the va r ia t ion  of the plas t ic  v i scos i ty  and ul t imate  shear  s t r e s s  can be approximated  
by an exponential  function 

~] (T) = ~10 exp [-- [~1 (T - -  To)], % (T) = %  exp[-- [~s (T - -  To)] (1) 
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w h e r e  ~?0 and 70 a r e  the p las t i c  v i s c o s i t y  and u l t ima te  s h e a r  s t r e s s ,  
ca lcu la ted  at the wal l  t e m p e r a t u r e ;  fll and t32 a r e  cons tan t s .  

The  s y s t e m  of equa t ions  of m o t i o n  and heat  conduct ion in d i m e n -  
s ion l e s s  v a r i a b l e s  in the  c a s e  of (1) has  the f o r m  

1 d ~ d01 \ 
-~- -~- (g --~--) = O, 0-...<5<7-% (2) VI ~ eonst, 

d~ 5e-~ - -  i e-(B-1)o, -4- 2 , 2 a; = 0 ,  r  (3) 
dO2 ~ dV~ \ l d(5..~_)+ae_O,(__ .ie~_l)o,+ Z_~_) (_~_~)=0 ,  ~ o < ~ < l  (4) 

d~ 
i.e_~O ' ~ Re dP 

4 d; 5, 0 ~ < 5 o  (5) 

~ = r / R ,  ~o=ro]R, ~=z/R,  Vi=v~z/<V), p=p/(p<v>~]2),  ~=~/131  
0i = ~1 (Ti - -  T0), Re = 2R <v) p / ~10, ! = 2x0R / <v> ~1o 
a = [t~ <v> ~ ~1o ] 2kJ 

H e r e  i= 1 and 2 fo r  the c o r e  and v i s c o p l a s t i c  reg ion ,  r e spec t ive ly ,  
r is the v a r i a b l e  rad ius ,  r 0 is  the  c o r e  r a d i u s .  Viz is the longi tudinal  
ve loc i ty ,  c v >  is the m e a n  veloci ty ,  d e t e r m i n e d  by the  r a t io  of the v o l -  
u m e  flow p e r  second  to the  c r o s s - s e c t i o n a l  a r e a  of  the tube, p is the 
p r e s s u r e ,  p is the dens i ty  of  the liquid, Re is the Reynolds  number ,  I 
is the I lyush in  p a r a m e t e r ,  a is a p a r a m e t e r  c h a r a c t e r i z i n g  the r a t e  of 
heat  p roduc t ion  due to v i s cous  f r ic t ion ,  k is the t h e r m a l  conduct iv i ty  
of the liquid, and J is the m e c h a n i c a l  equivalent  of heat .  

The  boundary  condi t ions  a r e  

d0~ / d5 -- 0, 5 ---- 0 (6) 

dVs dO~ dos 
V~=V~, - - ~ = 0 ,  0 1 = %  -~-= 'a~ .  ' 5=50  (7) 

v2=o, 0 ~ = o ,  ~ = t  (8) 

To the boundary  condi t ions  (6)-(8) we have to add the e x p r e s s i o n  
fo r  the d i m e n s i o n l e s s  vo lume  flow r a t e  

1 
V1~o * + 21 5V2 (5) d5 = I (9) 

to 

The  solut ion of (2), taken in conjunct ion  with (6), is 

w h e r e  A is a constant .  

o, = A 0- o) 

F o r  the c o r e  rad ius  we obtain f r o m  (5) and (10) 

50 = 4t exp (-- g A) Re -1 (--  dP / d4)-' (11) 

In t eg ra t i on  of (3) in conjunct ion  with the second  boundary  condit ion (7) and the e x p r e s s i o n  f o r  the c o r e  
(11) g ives  

dVz / d5 = t/2 (-- rise s~ + I e -(~-1)~ 
u = - - l / , R e d P / d ~  

We will  hence fo r th  a s s u m e  that the m e a n  flow ra te ,  o r  the p a r a m e t e r s  I, a ,  and Re, a r e  known. 

Subst i tut ion of (12) in (4) leads  to the equat ion 

(12) 
(13) 

d'~02d~ 2 -~T |  "--~--I-d0~. ~'a (n2[~eO~ _ [x~e-(~-l)o,) = 0 (14) 

The  solut ion of (14) is not  e x p r e s s e d  in q u a d r a t u r e s ,  but can be  obtained numer i ca l l y .  In (14) t he re  
a r e  t h r ee  independent p a r a m e t e r s :  I, c~, and /3. [The p a r a m e t e r  ~,  in t roduced  above, is e x p r e s s e d  as  a 
funct ion of I, ~, and p by  m e a n s  of (9).] This  g r e a t l y  compl i ca t e s  the  t abu la r  o r  g raph ic  r e p r e s e n t a t i o n  of 
the n u m e r i c a l  solut ion.  
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In many cases of pract ical  interest  we can assume that ~<<1. 

We construct an approximate solution of the problem by the perturbation method [11], putting 

O, = Oi, o+o~O~,~ + o:30~,~ + . . . .  V~ = Vl, o + o:V~,l + @ V ~ , ~ + .  . .  ~o = ~o,o + O~o,~ + o*~o,~ + . . . .  

u = Xo + ~z~x + ~3~3 + ... (15) 

By substituting expansions (15) in (12), (L4), and the boundary conditions, and equating coefficients of 
equ.al powers of o~, we obtain a recur ren t  sys tem of l inear boundary-value problems for  the zero, f i rs t ,  and 
subsequent approximations. Fo r  ~= 0 the temperature distribution is uniform: 0i,0=0. The zero approxi- 
mation Vi, 0 is the known solution [12] 

~ I ( ~ _  t) ~o V,,o = ~ i (~o,o - -  i) - -  T ( t  - -  ~.0), V~,o = - ~  + - T - ( t - r  ~o = I /~0 ,0 .  (16) 

TO determine the core radius in the isothermal case (o~ = 0) we use an equation [12], which in the adopted 
symbols have the form 

~0o i - 3 x ~ o , o  + 3 ~ 0 ,  X = a / a  + 8 / I  (17) 

Equation (17) has a single positive root less  than unity [12]. 

The f i r s t  approximation is found f rom the solution of the following l inear  boundary-value problem: 

dV2,x l 
~Xl  (I S) 

d~a  t dih,1 
a~2 "+ ~, d~ +t(~o2~3--~o ~)=0 (19) 

VI,1 = V . , .  0 m - -  0~,1, d03a / d~ = 0 ,  ~ = ~o,o (20) 
V2,1 = 0 ,  02,1 = 0, ~ = i (21) 
Uo~o,z + Zz~o,o ~ - -  ~ I 0~,~ (22) 

1 

V 1 , 1 ~ ,  0 -Jr- 2 I ~V3,x(~)d~---- 0 (23) 
V,o,0 

Integrating (19), using the third boundary condition (20) and the condition (21), we obtain 

01,x -~ ~ I  ~ ~ [  t - ~, (t -- ~s)95o,o ~,0121n ~ ) (24) 

The function 01,1 is found f rom the second boundary condition (20). Substituting (24) in (18) and inte- 
grating in conjunction with the f i rs t  boundary condition (21), we obtain 

1 1 

= ~ J ' ~ ' -  ( t  - -  V,,, "~ i-E- ~*) + uoi ~0*'~d~ + I (~ -- l) i 03"d~} (25) 

The integrals in (25) can be calculated, but in view of the unwieldy final expressions it is more  con- 
venient to obtain the resul t  for a specific value of I. 

F r o m  (25) and the f i rs t  boundary condition (20) we find V1, i. Substituting (25) in (23) and integrating 
by parts  we find 

1 1 

,0 ~0,0 

The value of ~0,1 is determined f rom (22). 

Fo r  the second approximation we have the boundary-value problem 

dV~,3 / d~ 1]3 [Zo~ + I (9 -- l)] 0~,~ .+ 1/4 [-- ~o~ + (9 -- i) 3 I ] 0 z = - -  3,1 - -  1]2~z103,1 - -  l l~z~  

d~0~,~a~ ~ ~i a0md~ r ~ [ua3~ + (9 - -  l)  IUo~] 0~,1 + li2 (2Uo~ ~ - -  I ~) • = 0 

01,~ = 03,~, d02, 2 /d~ = 0, ~ = ~o,o 
V2,~ = 0 ,  02,3=0, ~ = t  

• + x~0,~ + ~ o , o  --  - -  I p (01,3 - -  ~/3 P0~,~ 3) 
1 

V 3 = , , ~ , o  + 2 y ~V~,3d~ 0 
~o,o 

(27) 

(2s )  

(29) 

(30) 

(31) 

(32) 
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We give the resu l t  

o dV2,t /~: "~ ~,1 d~V~,o 
V1, z = V~,~ (to,o) -Jr- go,1 - - ~  t~o,o~ -~- 2 d~,: (~o,o) (33) 

03,2 = --  112tn t I /102,1d~ --  1/2 f In tfl02,1d~ + ~1/2 [! t],0 / 6 In ~ + • (l - -  ~') / 8 --  I (l - -  ~3) / 91 (34) 
~,0 ~ 1 

~___ - -  ~ 0 2 V2,~ 1/4• ~) -{- 1/2 f (flO2,~/• ~,1/2 -]- • d~ (35) 

1 

- -  ~o4,o) t ~ ~ o t  * - -  2 ~ 2 : 2  • t 2 ]  % = - ~ / d [ I (/,o2,~ / /~oL / + ,,,~o~,,) at + ~o,o~o,~ o ,  J 
To ~o 

/1 =u02~ 3 + I (~ --  l)• 2, .f2 : - - •  + (~ --  i) 2I (36) 

Equations (16), (17), (22), and (24)-(26) give the solution of the p rob lem in the f i r s t  approximation,  and 
(31), (33), and (34)-(36) give it in the second approximat ion.  

Despi te  the r a the r  unwieldy form,  the solution fo r  each specif ic  case  can be obtained re la t ive ly  easi ly,  
pa r t i cu l a r ly  by computer ,  s ince the p rocedu re  r educes  to finding the root of Eq. (17) and calculat ing definite 
in tegra l s .  

We should mention-one spec ia l  f ea tu re  of the above -desc r ibed  l inear iza t ion  of s y s t e m  (1)-(9) due to 
the behavior  of the ze ro  approximat ion  and its de r iva t ives  at point ~00. The co re  radius  cor responding  to 
the k - th  approximat ion  is that of the ( k - 1 ) - t h  approximat ion .  

Computer  calculat ions in the range  of p a r a m e t e r s  (0< I---40, 0_<p -< 1), showed that energy  d iss ipa t ion  
can significantly a l t e r  the local  and integral  flow cha rac t e r i s t i c s .  The  d i f fe rences  in the solutions of the 
f i r s t  and second approx imat ions  a r e  ve ry  insignificant.  

Some of the r e su l t s  of the calculat ions a r e  i l lus t ra ted  in Figs .  1-3. On all the f igures  the i so the rmic  
solutions a r e  r ep re sen t ed  by dot -dash  cu rves , the  f i r s t - a p p r o x i m a t i o n  solutions by dashed curves,  and the 
second-approx imat ion  solut ions by continuous curves .  

F igu re  1 shows c h a r a c t e r i s t i c  veloci ty  prof i les  calculated fo r  the following values  of p a r a m e t e r s :  1-  
20, o~= 0.1, /3=1; a =  0 co r re sponds  to the i so the rmic  Buckingham prof i le  (16). The p resen ted  curves  c lea r ly  
show the effect of internal  heating of the liquid, which leads to an i nc r ea se  in the re la t ive  flow veloci ty  in the 
core  region and its reduct ion nea r  the wall.  The g r e a t e s t  d i f ference  ha the veloci ty  prof i les  of the f i r s t  and 
second approx imat ions  is found in a nar row region contiguous with the core  boundary, which can be a t t r i b -  
uted to the above-ment ioned  fea tu re  of the l inear iza t ion  of the initial sys t em.  

F igu re  2 shows a g raph  of the var ia t ion  of the d imens ion less  core  boundary in (~0, I) coordinates  in 
the f o r m  of a f ami ly  of curves  with p a r a m e t e r  p ,  calculated fo r  the single value a =  0.1 (the values  of /3 
cor responding  to curves  1 and 2 a r e  0 and 1). The re la t ionship between the core  radius  and the Ilyushin 
p a r a m e t e r ,  calculated f r o m  (17), co r re sponds  to ~ = 0 . . A s  Fig. 2 shows, the core  radius  can be g r e a t e r  or  
s m a l l e r  than its value in i so the rmic  flow (for a fixed mean  velocity),  depending on the value of p. This  is 
due to the fact  that in the ca se  where  the u l t imate  shea r  s t r e s s  is independent of the t e m p e r a t u r e  (fl= 0) the 
reduction of the liquid v i scos i ty  due to d iss ipat ion leads to reduct ion of the shea r  s t r e s s  and en la rgement  of 
the core.  As /3 inc reases ,  reducUon of the u l t imate  shea r  s t r e s s  becomes  the dominant effect.  

F o r  the hyd rau l i c - r e s i s t ancecoe f f i c i en t  of a round tube, using (13), we obtain 

) ~ =  2 B ( - - d p / d z ) / p ( v  2) /2 ,  ~ .= 6 4 / R e  (• + a •  +a~•  = 64 / Re q) (a, I, [3) (37) 

The f i r s t  t e r m  of the sum in (37) is the h y d r a u l i c - r e s i s t a n c e  coefficient  for  i so the rma l  flow [13] of a 
v i scoplas t ic  liquid in a round tube; the second and third t e r m s  of this sum a r e  co r rec t ions  to the f i r s t  and 
second approximat ions ,  respec t ive ly ,  f o r  d i ss ipa t ive  heating of the liquid. 

Function ~p (c.~, I, fl) is shown in Fig.  3 in the f o r m  of a family  of curves  with p a r a m e t e r  ft. (The co r -  
respondence  between the number  of the curv. e and /3 is the s a m e  as .in Fig.  2). All the curves  we re  ca lcu-  
lated for  one value of vz(0.1). The dot -dash  cu rve  r e p r e s e n t s  function ~ (I), which is a solution of Eq. 
(17), where  the cor respondence  ~0,0=I/x0 mus t  be  taken into account. 

As Fig.  3 shows, Lhe h y d r a u l i c - r e s i s t a n c e  coefficient  for  a flow with d iss ipa t ive  heating is lower  than 
in the case  of i so thermic  flow or a flow of liquid with constant rheologica l  cha r ac t e r i s t i c s .  The  d i f fe rences  
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can be come very large with increase  in fl, even when the dissipative paramete~ has a v e r y  low value. This 
c i rcumstance  must  be taken into account in accurate  messu ,  ements on capillary v i scos imeters .  

The experimental results  are  usually represented in the form of a relationship between the mean shear  
velocity gradient <dvz/dr> = 4 < v > / R  and the wall shea~ s t ress  ~-w = t /2R(-dp /dz) .  In the case of a v isco-  
plastic liquid this relationship tends asymptotically to a straight line [14]. If experiment shows a deviation 
from a straight line, we can infer that the Shvedov-Bingham model does not represent  the rheological  be-  
havior of the liquid. In the case  of liquids whose rheological charac ter i s t ics  are  very  sensitive to tempera-  
ture  change, however, the deviation can be due to the dissipative effect. 

The resul ts  obtained above allow this effect to be taken into account. F o r  a given mean flow velocity 
and known rheological constants ~'0 and ~?0 the p r e s s u r e  drop, with allowance for energy dissipation, is given 
by formula (37). 

I thank V. I. Maron for supervision of the work. 

LITERATURE CITED 

i. H. Hausenblas, "Die nichtisoterme laminare StrSmung eine~ z~hen Fliissigkeit durch enge Spalte und 
KapillarrShren," Ingr.-Arch., 18, No. 3 (1950). 

2~ S.A. Regirer, "Some thermohyd~odynamicproblemsofa steady one-dimensional flow of viscous drop- 
forming liquid," Prikl. Matem. Mekh. ~ No. 3 (1957). 

3. S.A. Kaganov, "Steady laminar flow of incompressible liquid in a flat channel and around cylindrical 
tube with due regard to friction heat and variation of viscosity with temperature," Zh. Prikl. Mekhan. 
Tekh. Fiz., No. 3 (1962). 

4. S.A. Bostandzhiyan, A. G. Merzhanov, and S. I. Khudyaev, "The hydrodynamic thermal explosion," 
Dokl. Akad. Nauk SSSR, 163, No. 1 (1965). 

5. S.A. Bostandzhiyan and S. M. Chernyaeva, "The hydrodynamic thermal explosion of a non-Newtonian 
liquid," Dokl. Akad. Nauk SSSR, 170, No. 2 (1966). 

6. V.P. Belomyttsev and N. N. Gvozdkov, "Loss of thermal stability of motion of a viscoplastic material," 
Dokl. Akad. Nauk SSSR, 170, No. 2 (1966). 

7. Ya. M. Rasizade and R. M. Mamedov, "Effect of heat of internal friction on hydraulic characteristics 
of a structured flow of viscoplastic media in tubes," Izv. Vysshikh Uchebn. Zavedeni[, Neft i Gaz, No. 
12 (1968). 

8. E.G. Barry, "Pumping non-Newtonian waxy crude oils," J. Inst. Petrol., 57, No. 554 (1971). 
9. F.F.  Abuzova, V. F. Novoselov, and P. I. Tungunov, "Selection of equation fo~ temperature dependence 

of static shear stress of paraffin oils," Izv. Vysshikh Uchebn. Zavedenii, Neff i Gaz, No. 1 (1972). 
i0. P.A. Filonov, Movement of Oil through Pipes [in Russian], Neftyanoe Izd-vo, Moscow--Leningrad 

(1930). 
1!. G.N. Polozhii, N. A. Pakhareva, L Z. Stepanenko, P. S. Bondarenko, and I. M. Velikoivanenko, Math- 

ematical Practicum [in Russian], Fizmatgiz, Moscow (1960). 
12. A. Kh. Mirzadzhanzade, Questions of Hydrodynamics of Viscoplastic and Viscous Liquids in Applica- 

tion to Oil Extraction [in Russian], Azerneftneshr, Baku (1959). 
13. B.I. Mitel'man and G. D. Rozenberg, "Structured flow of viscoplastic liquid through a cylindrical tube 

of rounct section," Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Mekhan. i Mashinostr. ,  No. 4 (1961). 
14. M. Reiner, Rheology, Springer-Verlag,  Berlin (1958). 

354 


