ASSESSMENT OF EFFECT OF HEAT OF INTERNAL
FRICTION ON CHARACTERISTICS OF STRUCTURED
FLOW OF VISCOPLASTIC LIQUID IN A ROUND TUBE

V. E. Pervushin UDC 532.5:532.135

A structured pressure flow of viscoplastic liquid in an infinite round tube is examined. En-
ergy dissipation is given due consideration; it is assumed that the temperature dependences
of the plastic viscosity and the ultimate shear stress are exponential. The solution obtained
when the parameter characterizing the rate of production of heat of internal friction is as-
sumed to be small indicates that energy dissipation has a sgnificant effect on the local flow
characteristics and the hydraulic-resistance coefficient, for which an expression suitable for
engineering calculations is given.

There have been investigations [1-7] of steady structured pressure flows of Newtonian and non-New-
tonian liquids in which the energy dissipation and the variation of the rheological characteristics with tem-
perature have been taken into account.

Kaganov [3] showed that there are critical pressure gradients above which a steady flow of Newtonian
liquid is impossible. Some authors [4-6] have shown that a hydrodynamic thermal explosion can occur in
flows of Newtonian [4] and non-Newtonian [5, 6] liquids.

It is of interest to solve this problem in the region of parameters in which the flow and heat-transfer
regimes are steady. If a large error is to be avoided we must take temperature dependences of the rheo-
logical characteristics of the liquid which are similar to the experimental relationships.

In the investigation of a pressure flow of viscoplastic liquid in [6, 7], where energy dissipation re-
ceived due consideration, it was assumed that the plastic viscosity varies with temperature in accordance
with a hyperbolic law, and the ultimate shear stress varies with temperature in accordance with the same
law [6], or is constant [7].

Such viscoplastic liquids as paraffin oils are characterized by a strong temperature dependence of
their rheological characteristics [8, 9]; this dependence is satisfactorily approximated by an exponential
curve [9, 10].

A pressure flow of viscoplastic liquid for this case of variation of the rheological characteristics with
temperature has not been investigated.

We consider a steady structured flow of viscoplastic liquid with a Shvedov—Bingham rheological equa-
tion due to a pressure difference (—dp/dz) in a round tube of radius R along the z axis. A constant temper-
ature T, is maintained at the wall, the temperature gradient along the flow is zero, and the nonisothermicity
of the flow is due to energy dissipation.

We assume that the variation of the plastic viscosity and ultimate shear stress can be approximated
by an exponential function

N(T) = npexp[— By (T — T, 7o (T) =7y expl— B, (T — T)] 1)
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(AL s FE=SESN where 7, and T, are the plastic viscosity and ultimate shear stress,
\\ calculated at the wall temperature; S; and B, are constants.
! \ The system of equations of motion and heat conduction in dimen~
\‘ sionless variables in the case of (1) has the form
5 \
25 1 d do 7
\\\‘ V= const, TE (E’—dg—l) =0, 0ECE, (2)
14 [Ee—"» (_ 1e—(B-19 4. 2 EV_ﬂ)] _Re 4P _ o r<<ESH @)
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’ 2 _ ; - a\[/dVa\
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E=r/R, G=r/R, [=2/R, Vi=v,/®), P=p/(pw)*]2), B=Ba/B1
9i=Bx(Ti—To), Re=2Rw)p/ne, 1=21,R/wd,
o =3 {vdine/2kJ

Here i=1 and 2 for the core and viscoplastic region, respectively,
r is the variable radius, r; is the core radius, viz is the longitudinal
velocity, ¢v> is the mean velocity, determined by the ratio of the vol-
ume flow per second to the cross-sectional area of the tube, p is the
pressure, p is the density of the liquid, Re is the Reynolds number, I
is the Ilyushin parameter, o is a parameter characterizing the rate of
heat production due to viscous friction, k is the thermal conductivity
of the liquid, and J is the mechanical equivalent of heat.

The boundary conditions are

do,/dg =0, §=0 (6)

av. @ _ 48
Vi=Ve F=0 0=0, F =3 E=i 7
V,=0, 8,=0, =1 (8)

To the boundary conditions (6)-(8) we have to add the expression
for the dimensionless volume flow rate

1
ViEd+2§ e @ae =1 ©
)

The solution of (2), taken in conjunction with ), is

0, =4 (10)

where A is a constant.

For the core radius we obtain from (5) and (10)
8o = 41 exp (— B 4) Re™! (— dP /d})™! 11)

Integration of (3) in conjunction with the second boundary condition (7) and the expression for the core
(11) gives

AV, / df = 1/, (— nEe® . 1e(B-D0) (12)
% = — 1/, RedP / df 13)

We will henceforth assume that the mean flow rate, or the parameters I, @, and Re, are known.
Substitution of (12) in &) leads to the equation

A +3 -‘Z—‘;z- & (e — Inke ) — 0 (14)

The solution of (14) is not expressed in quadratures, but can be obtained numerically. In (14) there
are three independent parameters: I, o, and §. [The parameter u, introduced above, is expressed as a
function of I, &, and 8 by means of (9).] This greatly complicates the tabular or graphic representation of
the numerical solution.

351



In many cases of practical interest we can assume that o «1.
We construct an approximate golution of the problem by the perturbation method [11}], putting

0, =0;,+ab;; +a;, + ..., Vi=Vyo+aVy1 +&Viet ... 8 = Eo0 + a8o + %Eoe + - -
% =Ky + AWy + AWy -+ ... (15)

By substituting expansions (15) in (12), (14), and the boundary conditions, and equating coefficients of
equal powers of ¢, we obtain a recurrent system of linear boundary-value problems for the zero, first, and
subsequent approximations. For a=0 the temperature distribution is uniform: 6j ,=0. The zero approxi-

_mation Vj_, is the known solution [12]

Vig=7 1Eoa—1) — 2 —Ba), Vag=g1E—1) +FU—E): % =1/E0 16)
To determine the core radius in the isothermal case (@ =0) we use anequation [12], which inthe adopted
symbols have the form
B! — 3 %k +3=0, x=1%,+8/1 17)
Equation (17) has a single positive root less than unity [12].

The first approximation is found from the solution of the following linear boundary-value problem:

T =gl — B D) 10— 3ba (18)
i 1

f;—';%‘-+-z— T G =0 B =0 (19)

Vig = Vo, 811 = 0, d8,;,/dE =0, § = &g (20)

Var =0, 05,=0, E=1 (21)

%oBp1 - ¥afoo = — B 1 8y (22)
1

Vilo+2 § &on@®dE=0 (23)
%,0

Integrating (19), using the third boundary condition (20) and the condition (21), we obtain
I [1—8 (d—E)Ep  Eolnd (24
81 = 2 ( ® ] -T2 ) )

The function g,y is found from the second boundary condition (20). Substituting (24) in (18) and inte-
grating in conjunction with the first boundary condition (21), we obtain

V2,1 = _;_{_’.;L (1—-8)+ ”oS Eee,ldg + 1@ - 1)S ez,1d§} (25)

The integrals in (25) can be calculated, but in view of the unwieldy final expressions it is more con-
venient to obtain the result for a specific value of L.

From (25) and the first boundary condition (20) we find Vy ;. Substituting (25) in (23) and integrating
by parts we find

= —4/(1— 8% .=,§ £%0,08 + 1(8—1) S 0,108 9
i Eo '

0 0

The value of £ i is determined from (22).

For the second approximation we have the boundary-value problem

AV [dE = — Yy [®eE + 1 B —1)] ez,zl e l— e 4+ (B —1)? 1] eg,l — 151101 ~— ook (27)
Toa b1 T L (B— 1) 10181+ o (2B — 180 =0 (28)
91,2 = 6_2,27 dez,z /dg = 0, § = Eo,o (29)
Voo =0, 0,,=0, E=1 (30)
%0802 + %1801 + %2800 = — 1B (8,5 — Y5 $01,1?) (31)
1
Vibio+ 2 § &Va0dt =0 (32)
Eo,0
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2 2
Vi = Vs Go) + boa S by) + 9 T2t g, ) (33)
We give the result
£ 1
O = — YalnE § 70,108 — 1o § InEAi0, 108 +20/211 B0/6InE 420 (1 —EY/8— T(1 —E%)/9) (34)
€90 g 1
Vi = Yara (1 — 8 + Yo § (1000 /#oE —[1208.1/2 + %480, 1) d @35)
13
1
M= — 4 (L — B[ § B2 (h0a/ %k — f01/2 + uE00,0) dE + B3 B 100/ 2]
Eo,0 ’
fr=mt 1 (B — 1) %o, fy = — #oE - (B — 1) (36)

Equations (16), (17), (22), and (24)-(26) give the solution of the problem in the first approximation, and
(31), (33), and (34)-(36) give it in the second approximation.

Despite the rather unwieldy form, the solution for each specific case can be obtained relatively easily,
particularly by computer, since the procedure reduces to finding the root of Eq. (17) and calculating definite
integrals,

We should mention-one special feature of the above-described linearization of system (1)-(9) due to
the behavior of the zero approximation and its derivatives at point £,. The core radius corresponding to
the k-th approximation is that of the (k—1)-th approximation.

Computer calculations in the range of parameters (0< I=40, 0= =<1), showed that energy dissipation
can significantly alter the local and integral flow characteristics. The differences in the solutions of the
first and second approximations are very insignificant.

Some of the results of the calculations are illustrated in Figs. 1-3. On all the figures the isothermic
solutions are represented by dot-dash curves,the first-approximation solutions by dashed curves, and the
second-approximation solutions by continuous curves.

Figure 1 shows characteristic velocity profiles calculated for the following values of parameters; I=
20, a=0.1, f=1; o=0 corresponds to the isothermic Buckingham profile (16), The presented curves clearly
show the effect of internal heating of the liquid, which leads to anincreaseinthe relative flow velocity in the
core region and its reduction near the wall. The greatest difference n the velocity profiles of the first and
second approximations is found in a narrow region contiguous with the core boundary, which can be attrib-
uted to the above-mentioned feature of the linearization of the initial system.

Figure 2 shows a graph of the variation of the dimensionless core boundary in (&, I) coordinates in
the form of a family of curves with parameter S, calculated for the single value a¢=0.1 (the values of §
corresponding to curves 1 and 2 are 0 and 1). The relationship between the core radius and the Ilyushin
parameter, calculated from (17), corresponds to aa=0. As Fig. 2 shows, the core radius can be greater or
smaller than its value in isothermic flow (for a fixed mean velocity), depending on the value of B. This is
due to the fact that in the case where the ultimate shear stress is independent of the temperature (8= 0) the
reduction of the liquid viscosity due to dissipation leads to reduction of the shear stress and enlargement of
the core. As B increases, reduction of the ultimate shear stress becomes the dominant effect.

For the hydraulic-resistance coefficieni: of a round tube, using (13), we obtain
A=2R(—dp/ds)/ o> /2, A=064/Re (#y/8 +on; /8 L a™,/8) =64/Reg(x, 1, B) 37)

The first term of the sum in (37) is the hydraulic-resistance coefficient for isothermal flow [13] of a
viscoplastic liquid in a round tube; the second and third terms of this sum are corrections to the first and
second approximations, respectively, for dissipative heating of the liguid.

Function ¢ (o, I, B) is shown in Fig, 3 in the form of a family of curves with parameter 3. (The cor-
respondence between the number of the curve and f is the same as-in Fig. 2). All the curves were calcu-
lated for one value of «(0.1). The dot-dash curve represents function ¢ (I), which is a solution of Eq.

(17), where the correspondence 50’0=I/%0 must be taken into account.

As Fig. 3 shows, the hydraulic-resistance coefficient for a flow with dissipative heating is lower than
in the case of isothermic flow or a flow of liquid with constant rheological characteristics. The differences
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can be come very large with increase in 8, even when the dissipative parameter has a very low value. This
circumstance must be taken into account in accurate measur ements on capillary viscosimeters.

The experimental results are usually represented in the form of a relationship between the mean shear
velocity gradient <dvz/dr> =4<v> /R and the wall shea: stress TW=1/2R(— dp/dz). In the case of a visco-
plastic liquid this relationship tends asymptotically to a straight line [14]. If experiment shows a deviation
from a straight line, we can infer that the Shvedov—Bingham model does not represent the rheological be-
havior of the liquid. In the case of liquids whose rheological characteristics are very sensitive to tempera-
ture change, however, the deviation can be due to the dissipative effect.

The results obtained above allow this effect to be taken into account. For a given mean flow velocity
and known rheological constants 7y and n, the pressure drop, with allowance for energy dissipation, is given
by formula (37).

I thank V. I. Maron for supervision of the work.
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